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Patching and local-global principles for homogeneous spaces over
function fields of p-adic curves
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Abstract. Let F D K.X/ be the function field of a smooth projective curve over a p-adic field
K. To each rank one discrete valuation of F one may associate the completion Fv . Given an
F -variety Y which is a homogeneous space of a connected reductive group G over F , one may
wonder whether the existence of Fv-points on Y for each v is enough to ensure that Y has an
F -point. In this paper we prove such a result in two cases:

(i) Y is a smooth projective quadric and p is odd.
(ii) The group G is the extension of a reductive group over the ring of integers of K, and Y

is a principal homogeneous space of G.
An essential use is made of recent patching results of Harbater, Hartmann and Krashen.

There is a connection to injectivity properties of the Rost invariant and a result of Kato.
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1. Introduction

Let K be a p-adic field, by which we mean a finite extension of a field Qp . Let
A be its ring of integers. Let X=K be a smooth, projective, geometrically integral
curve. Let F D K.X/ be the function field of X . This is a field of cohomological
dimension 3. Let � denote the set of discrete valuations (of rank one) on the field F .
Given v 2 � we let Fv denote the completion of F at v.

We wonder whether in this context there is a local-global principle for the existence
of rational points on homogeneous spaces of connected linear algebraic groups over F .

Conjecture 1. Let F D K.X/ be as above. Let Y=F be a projective homogeneous
space of a connected linear algebraic group. If Y has points in all completions Fv ,
then it has an F -rational point.

Conjecture 2. Let F D K.X/ be as above. Let G=F be a semisimple, simply
connected group. If a class � in the Galois cohomology set H 1.F; G/ has trivial
image in each H 1.Fv; G/, then � is trivial. In other words, if a principal homogeneous
space under G has points in all completions Fv , then it has an F -rational point.
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It is unlikely that Conjecture 2 holds for an arbitrary connected reductive group
G, for instance for a torus. It definitely fails for G a finite constant group, see §6.

As we explain in Section 5 (Theorem 5.4), Conjecture 2 may be proved for most
quasisplit simply connected groups by using a combination of properties of the Rost
invariant and a result of Kato [20].

In their recent paper [15], Harbater, Hartmann and Krashen have developed the
patching technique of [14] to the point where they get local-global theorems for
homogeneous spaces. Their main local-global theorems refer to some other families
of overfields of F than the family fFvg we consider here. But they manage to apply
the technique to the extent that they give a radically new proof of the theorem by
Parimala and Suresh [31] that any quadratic form in at least 9 variables over K.X/

(K as above, nondyadic, X a curve over K) has a nontrivial zero.
Their techniques apply more generally to complete discrete valuation rings with

arbitrary residue field.
In the present paper, we use the method and theorems of Harbater, Hartmann and

Krashen to prove the following results.
1) For smooth quadrics of dimension at least 1, which are projective homogeneous

spaces under the associated special orthogonal group, under the assumption that the
characteristic of the residue field of K is not 2, we prove Conjecture 1. We actually
prove the more general result (Theorem 3.1):

Let A be a complete discrete valuation ring with fraction field K and residue field
k of characteristic different from 2. Let X be a smooth, projective, geometrically
integral curve over K. Let F D K.X/ be the function field of X . Let q be a
nondegenerate quadratic form over F in at least 3 variables. If for each discrete
valuation of F , the form q is isotropic over the completion of F with respect to this
valuation, then q is isotropic over F .

2) We show (Theorem 4.8) that the statement of Conjecture 2 holds for any (fi-
brewise connected) reductive A-group G.

This relies on the following general result (Theorem 4.3):

Let A be a complete discrete valuation ring, K its field of fractions and k its
residue field. Let X=A be a projective, flat curve over Spec A. Assume that X is
connected and regular. Let F be the function field of X . Let � be the set of all
discrete valuations on F . Let G=A be a ( fibrewise connected ) reductive group.
If there exists a connected linear algebraic group H=F such that the F -group
.G �A F / �F H is an F -rational variety, then the restriction map with respect
to completions H 1.F; G/ ! Q

v2� H 1.Fv; G/ has a trivial kernel.

As mentioned above, an independent argument, which builds upon injectivity
properties of the Rost invariant (which themselves rely on a case by case proof) and
upon a theorem of Kato, yields a proof of Conjecture 2 for quasisplit, absolutely
simple, simply connected groups over F with no E8-factor.
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In the final Theorem 5.5, we revert the process: we use Theorem 4.8 together with
Bruhat–Tits theory to discuss the triviality of the kernel of the Rost invariant for split
simply connected groups over a function field in one variable over a p-adic field. The
result is classificationfree; in particular, it applies to E8.

Throughout this paper, when we write “discrete valuation ring”, we mean “discrete
valuation ring of rank one”, and when we write discrete valuation we mean valuation
with value group Z.

2. Why the u-invariant should behave well for function fields over the p-adics

The u-invariant of a field is the maximal dimension of anisotropic quadratic forms
over that field. Let us start with some reminders from the paper [21] by Kato and
Kuzumaki.

Let r � 1 be an integer. We say that a field F is a C 0
r field if the following

condition holds:

For any finite field extension F 0 of F and any integers d � 1 and n > d r , for
any homogeneous form over F 0 of degree d in n variables, the g.c.d. of the degrees
of finite field extensions F 00=F 0 over which the form acquires a nontrivial zero is 1.

The condition amounts to requiring that the F 0-hypersurface defined by the form
contain a zero-cycle of degree 1 over F 0.

Assume char.F / D 0. For each prime l , let Fl be the fixed field of a pro-l-Sylow
subgroup of the absolute Galois group of F . Any finite subextension of Fl=F is of
degree prime to l .

The field F is C 0
r if and only if each of the fields Fl is Cr in the usual sense (see

[21, Lemma 1]). A finite field extension of a C 0
r -field is C 0

r . The following easy
lemma does not appear in [21].

Lemma 2.1. Let F be a field of characteristic zero. If F is C 0
r then a function field

E D F.X/ in s variables over F is C 0
rCs .

Proof. Let E 0 be a finite field extension of E. After replacing F by a finite extension,
which by assumption is still C 0

r , we may assume that E 0 is the function field F.X/

of a geometrically integral F -variety X . The field Fl is Cr , hence by the classical
transitivity properties (Lang, Nagata), the field Fl.X/, function field of X �F Fl ,
is a CrCs-field. Thus any form of degree d over F.X/ in n > d rCs variables has
nontrivial solutions in Fl.X/, hence in a finite extension of F.X/ of degree prime to
l . As this applies to each prime l , this concludes the proof. �

It is an open question whether p-adic fields have the C 0
2 -property. An equichar-

acteristic zero analogue of that statement is proven in [6].
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Proposition 2.2. Assume that p-adic fields have the C 0
2 -property. Then over any

function field K.X/ of transcendence degree r over a p-adic field K, any quadratic
form in strictly more than 22Cr variables has a nontrivial zero.

Proof. By the previous lemma, such a quadratic form has a nontrivial zero in an
extension of odd degree of the field K.X/. By a theorem of Springer [23, VII,
Theorem 2.3] this implies that the quadratic form has a nontrivial zero in K.X/.

�

3. A local-global principle for isotropy of quadratic forms

Theorem 3.1. Let A be a complete discrete valuation ring with fraction field K and
residue field k of characteristic different from 2. Let X be a smooth, projective,
geometrically integral curve over K. Let F D K.X/ be the function field of X . Let q

be a nondegenerate quadratic form over F in at least 3 variables. If for each discrete
valuation of F , the form q is isotropic over the completion of F with respect to this
valuation, then q is isotropic over F .

Proof. Suppose we are given a diagonal quadratic form q D ha1; : : : ; ani over F D
K.X/ which is isotropic over the field of fractions of the completion of any discrete
valuation ring of F .

Let us recall basic notation from [14] and [15].
Let t denote a uniformizing parameter for A.
One may choose a regular proper model X=A of X=K such that there exists a

reduced divisor D with strict normal crossings which contains both the support of the
divisor of the ai ’s and the components of the special fibre of X=A. Let Y D X �A k

denote the special fibre.
For the generic point xi of an irreducible component Yi of Y , there is an affine

Zariski neighbourhood Wi of xi in X such that the restriction of Yi to Wi is a principal
divisor.

Let S0 be a finite set of closed points of the special fibre containing all singular
points of D and all points which lie on some Yi but not in the corresponding Wi .

Choose a finite A-morphism f W X ! P 1
A as in [14, Proposition 6.6]. In particular,

we have the following three properties. The set S0 is contained in S , the inverse image
under f of the point at infinity of the special fibre P 1

k
. All the intersection points of

two components Yi are in S . Each component Yi contains at least one point of S .
Let U � Y run through the reduced, irreducible components of the complement

of S in Y . Each U is a regular affine irreducible curve over k. Let kŒU � be the
ring of regular functions on this curve. This is a Dedekind domain. We thus have
U D Spec kŒU �. Let k.U / denote the fraction field of kŒU �.
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Since X is separated over Spec A, the intersection of the affine open set Wi with
the affine open set f �1.A1

A/ in X is an affine scheme Spec B � X. The ring B is
an integral, noetherian, regular ring of dimension 2. There exists s 2 B such that
U D Spec.B=s/ and t D u:sr 2 B for some integer r � 1 and u a unit in B�.

Let C be the localisation of B with respect to the multiplicative system S of
elements of B which do not vanish at any point of U . We obviously have C � B .
Let us show C D RU . Since every point of U is in Spec B , the local ring OX;x of a
point x in U is the local ring Bx , the localisation of B at the point x. Thus RU which
is the intersection of the rings OX;x as x varies in U is also the intersection of the
localisations of B at maximal ideals defining the points of U . If a is an element of
RU , there exist finitely many points xi in U and open neighbourhoods Vi of xi in U ,
the Vi covering U , and functions gi in B nonvanishing on Vi such that a D fi=gi ,
fi 2 B . Going modulo s, one concludes that there exist functions hi 2 B such that
g D P

i hi :gi is one modulo s, hence does not vanish on U . Then a D .
P

i hi :fi /=g,
hence a belongs to C .

Since RU D C is a localisation of B , it is a regular, noetherian, regular ring. The
inclusion B � C induces an isomorphism B=s ' C=s.

Let m be a maximal ideal in C . Assume s … m. Then m C C:s D C . Thus there
exists c 2 C and d 2 m with 1 D d C c:s. Then d D 1 � c:s does not vanish on U .
Write d D f =g with f; g 2 B and g invertible on U . Then f does not vanish on
U , hence d is invertible in C , which is a contradiction. Thus s and t D u:sr belong
to each maximal ideal of C D RU . By EGA IV, 7.8.3, one concludes that the t -adic
completion yRU , which is also the s-adic completion of RU , is a regular domain ([15],
Notation 3.3).

By definition, FU is the field of fractions of yRU . We have kŒU � D RU =s D yRU =s.
For P 2 S , the completion yRP of the local ring RP of X at P is a domain ([15],

Notation 3.3). By definition, the field FP is the field of fractions of yRP .
For p D .U; P / a pair with P 2 S in the closure of an irreducible component

U of the complement of S in Y , one lets Rp be the complete discrete valuation
ring which is the completion of the localisation of yRP at the height one prime ideal
corresponding to U . By definition, the field Fp is the field of fractions of Rp .

By [14, Proposition 6.3], the field F is the inverse limit of the finite inverse system
of fields fFU ; FP ; Fpg.

Let us show that q is isotropic over each field FU .
Each diagonal entry ai of the form q is supported only along U in Spec RU , thus

is of the form u:sj where u is a unit in RU . Hence the quadratic form q over F is
isomorphic to a quadratic form over F of the shape

hb1; : : : ; b�; s:c1; : : : ; s:c� i
where bi and cj are units in RU .

By hypothesis, q is isotropic over the field of fractions of the completed local ring
of X at the generic point of U . By a theorem of Springer [23, VI, Proposition 1.9 (2)],
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this implies that the image of at least one of the two forms q1 D hb1; : : : ; b�i or
q2 D hc1; : : : ; c� i under the composite homomorphism RU ! kŒU � ,! k.U / is
isotropic over k.U /.

Since the residue characteristic is not 2, each of the forms q1 and q2 defines a
smooth quadric over RU . In particular each of them defines a smooth quadric over
kŒU �. Since kŒU � is a Dedekind domain, if such a projective quadric has a point over
k.U /, it has a point over kŒU �. Since the quadric is smooth over RU , a kŒU �-point
lifts to an yRU -point (compare the discussion after [15, Lemma 4.5]). Thus q has a
nontrivial zero over FU .

Let us show that q is isotropic over each field FP . Let P 2 S . The local ring RP

of X at P is regular. Its maximal ideal is generated by two elements .x; y/ with the
property that any ai is the product of a unit, a power of x and a power of y. Thus
over the fraction field F of RP , the form q is isomorphic to a form

q1 ? x:q2 ? y:q3 ? xy:q4

where each qi is a nondegenerate diagonal quadratic form over RP . Let Ry be the
localization of RP at the prime ideal .y/. This is a discrete valuation ring with
fraction field F and with residue field E the field of fractions of the discrete valuation
ring RP =.y/. By hypothesis, the form .q1 ? x:q2/ ? y:.q3 ? xq4/ is isotropic
over the field of fractions of the completion of Ry . By Springer’s theorem [23, VI,
Proposition 1.9 (2)], this implies that over E the reduction of either .q1 ? x:q2/

or .q3 ? xq4/ is isotropic. Since x is a uniformizing parameter for RP =.y/, by
Springer’s theorem [23, VI, Proposition 1.9 (2)], this last statement implies that over
the residue field of RP =.y/, the reduction of one of the forms q1, q2, q3, q4 is
isotropic. But then one of these forms is isotropic over yRP , hence over the field FP

which is the fraction field of yRP .
The quadric Z=F defined by the vanishing of q is a homogeneous space of the

group SO.q/ over F , which since q is of rank at least 3 is a connected group. By
Witt’s result, for any field L containing F , the group SO.q/.L/ acts transitively on
Z.L/. The F -variety underlying SO.q/ is F -rational (Cayley parametrization). We
have Z.FU / ¤ ; for each U and Z.FP / ¤ ; for each P 2 S . By [15, Theorem 3.7],
we get Z.F / ¤ ;. �

Remark 3.2. Note that in the proof the only discrete valuation rings which are used
are the local rings at a point of codimension 1 on a suitable regular proper model X

of X . See however Remark 3.6.

Remark 3.3. The theorem does not extend to forms in 2 variables. See Remark 4.4
and Section 6.

The following corollary is a variant of a theorem of Harbater, Hartmann and
Krashen [15, Theorem 4.10].
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Corollary 3.4. Let A be a complete discrete valuation ring with fraction field K and
residue field k of characteristic different from 2. Let r � 1 be an integer. Assume
that any quadratic form in strictly more than 2r variables over any function field in
one variable over k is isotropic.

Then any quadratic form in strictly more than 4r variables over the function field
F D K.X/ of a curve X=K is isotropic.

Proof. Let L be a finite field extension of K. This is a complete discrete value field
with residue field a finite extension l of k. The hypothesis made on quadratic forms
over function fields in one variable over k, in particular quadratic forms over the
field l.t/, and Springer’s theorem ([23, VI, Corollary 1.10]) applied to the field l..t//

imply that any quadratic form in strictly more than r variables over l has a zero.
Another application of Springer’s theorem then implies that any quadratic form in
strictly more than 2r variables over L is isotropic.

Let q be a quadratic form in n variables over F with n > 4r . By Theorem 3.1
and Remark 3.2, to prove the corollary it suffices to show that q is isotropic over Fv

for every discrete valuation v with residue field either a function field in one variable
over k or a finite extension of K. By the hypothesis, the preceding paragraph and
Springer’s theorem, the quadratic form q is isotropic over such an Fv . �

Corollary 3.4 in its turn is a generalization of the main result of [31]:

Corollary 3.5. If K is a nondyadic p-adic field, any quadratic form in at least 9
variables over a function field in one variable over K has a nontrivial zero.

Remark 3.6. In Theorem 3.1, it is not enough to consider the discrete valuation rings
corresponding to the codimension 1 points of a given regular proper model X=A.

Let p be an odd prime and a a unit in Zp which is not a square. Rowen, Si-
vatski, Tignol [33, Corollary 5.3] (see also [19]) have shown that the tensor product
D D .a; p/ ˝ .t; a.p � t // of quaternion algebras over F D Qp.t/ is a division
algebra. The tensor product .a; b/ ˝ .c; d/ of two quaternion algebras over a field
F (char F ¤ 2) is a division algebra, i.e. has index 4, if and only if the associated
Albert form h�a; �b; ab; c; d; �cd i is anisotropic over F . Thus the quadratic form
q D h�a; �p; ap; t; a.p � t /; �at.p � t /i is a 6-dimensional anisotropic quadratic
form over F D Qp.t/.

Let X D P 1
Zp

be the projective line over Zp . The codimension one points v of
X are given by irreducible monic polynomials in QpŒt �, by 1=t and by the height
one prime ideal of ZpŒt � generated by p. Let F D Qp.t/, and let Fv denote the
completion of F at a discrete valuation v of F .

The residue field at a point v of codimension 1 of X is either a p-adic field or Fp.t/.
Any quadratic form in at least 5 variables over such a field is isotropic. At any prime v

of codimension 1 of X different from p, t , .p�t /, 1=t , the form q therefore has a zero
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over Fv . At v D t , one of the residue forms is h�a; �p; ap; api which is isotropic
over the residue field Qp , since h�1; a; ai is. At v D t � p, one of the residue forms
of q is h�a; �p; ap; pi and this form is clearly isotropic. At v D .1=t/, one of the
residue forms of q is h�a; �p; ap; ai which is clearly isotropic. At v D p, one of the
residue forms over the field Fp.t/ is h�a; t; �at; ai which again is clearly isotropic.
Thus the quadratic form q is isotropic over each field Fv corresponding to a point of
codimension 1 on X.

Theorem 3.1 and the result of [33] show that there must exist another completion
Fv , corresponding to a codimension 1 point on another model of P 1

Zp
, at which the

form is anisotropic.
Note that on P 1

Zp
, the divisor associated to the quadratic form does not have

normal crossings at the point defined by the ideal .p; t/ � ZpŒt � (compare the proof
of Theorem 3.1). It is thus natural to blow up the corresponding point. In practice,
one introduces a new variable x and one sets t D px. The quadratic form q now reads
h�a; �p; ap; px; ap.1�x/; �ax.1�x/i. At the prime ideal p of ZpŒx�, with residue
field Fp.x/, the two residue forms are h�a; �ax.1 � x/i and h�1; a; x; a.1 � x/i.
Since x.x � 1/ is not a square in Fp.x/, the first form is clearly anisotropic. As
for the second one, the two residue forms of h�1; a; x; a.1 � x/i at the valuation of
Fp.x/ with uniformizing parameter 1=x are anisotropic over Fp , because a is not a
square.

At any closed point of P 1
Zp

different from the point defined by .p; t/ � ZpŒt �

the form q admits a reduction of the shape ha; �ai, hence it is isotropic over the
fraction field of the complete local ring at such a point. The Zp-homomorphism
ZpŒt � ! ZpŒx� sending t to px sends the ideal .p; t/ of ZpŒt � to the ideal p of
ZpŒx�. It induces an injective homomorphism of the corresponding complete local
rings, hence an embedding of their fraction fields. The above argument shows that
q is anisotropic over the bigger fraction field. It is thus anisotropic over the fraction
field of the completion of ZpŒt � at the maximal ideal .p; t/.

Remark 3.7. The following question was raised by D. Harbater. Let A, K, X and
F D K.X/ be as in Theorem 3.1. Suppose a projective homogeneous variety Z

over F under an F -rational connected linear algebraic group has points in the field
of fractions of the completions at closed points of all possible regular proper models
of X over A. Does Z admit a rational point over F ? The following example gives a
negative answer to this question, already with Z a quadric.

Let p be an odd prime, let X=Zp be a smooth curve over Zp of relative genus at
least 1. Let X=Qp be its generic fibre and let Y=Fp be its special fibre. There exist
two quaternion division algebras H1 and H2 over the function field Fp.Y / whose
ramification loci on Y are disjoint. Let Nq1 and Nq2 be the reduced norms attached to
these two quaternion division algebras. Let q1, q2 be lifts of these quadratic forms
to the local ring R of the generic point of Y on X. Consider the quadratic form
q D q1 ? p:q2 over the function field F D Qp.X/. This form is isotropic over the
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fraction field of the local ring of any closed point P 2 X. Indeed at any such point
either the form q1 or the form q2 has good reduction.

On the other hand, the form q is anisotropic over F since both q1 and q2 are
anisotropic over the p-adic completion of the local ring R, whose uniformizing pa-
rameter is p.

Since the genus of X is at least 1, by a well known result of Shafarevich [37]
and Lichtenbaum [24], the curve X=Zp is an absolute minimal model of X over Zp .
Thus if X0=Zp is another model, there is a birational Zp-morphism X0 ! X. The
argument given above then shows that q is isotropic on the fraction field of the local
ring of any closed point of X0.

Remark 3.8. Let F be a function field in one variable over a p-adic field k.
For quadratic forms in 3 or 4 variables, there is a refined local-global princi-

ple for isotropy of quadratic forms: one only needs to take into account discrete
valuations which are trivial on K. The case of 3 variables is a consequence of a
theorem of Lichtenbaum [25], based on Tate’s duality theorem for abelian varieties
over a p-adic field: for X=K a smooth projective geometrically connected curve X

over a p-adic field K, if an element of the Brauer group of X vanishes after eval-
uation at each closed point of X , then it is zero. The case of forms in 4 variables
follows from the case of 3 variables by passing over to the discriminant extension
of the 4-dimensional form. This should be compared with Theorem 3.1. As Re-
mark 3.6 shows, such a refined local-global principle does not hold for forms in 6
variables. It actually does not hold for forms in 5, 6, 7 or 8 variables, as the following
argument shows.

Let K be a p-adic field. Suppose we are given a smooth complete intersection Y of
two quadrics given by a system of two quadratic forms f D g D 0 in projective space
P n

K such that Y.K/ D ;. By a theorem due independently to Amer (unpublished) and
to Brumer [3], the quadratic form f C tg in n C 1 variables over the field K.t/ then
does not have a nontrivial zero. The hypothesis of smoothness of Y ensures that over
any completion Fv of F D K.t/ at a place trivial on K, the form f C tg contains a
good reduction subform of rank at least n. Since K is p-adic, for n � 5, such a form
has a nontrivial zero. Hence for n � 5, that is from 6 variables onwards, the form
f C tg over F D K.t/ has a nontrivial zero in each completion of F at a place trivial
on K. It remains to exhibit such systems of forms as above. By a classical compacity
argument, to prove the existence of such a smooth Y , it is enough to produce an
arbitrary complete intersection of two quadrics in P n

K with no K-point. But that is
easy. Let f .x1; x2; x3; x4/ be the norm form of the nontrivial quaternion algebra
over K. Then the system f .x1; x2; x3; x4/ D 0; f .x5; x6; x7; x8/ D 0 defines such
a complete intersection in P 7, and one gets suitable systems in lower dimensional
projective space by letting some variables vanish. With f as above, m a suitable
integer, and h1 and h2 suitable diagonal quadratic forms, one can produce a smooth
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complete intersection without K-point of the shape:

f .x1; x2; x3; x4/ C pmh1.x5; x6; x7; x8/ D 0;

and

pmh2.x1; x2; x3; x4/ C f .x5; x6; x7; x8/ D 0:

There also exist smooth intersections of two quadrics

f .x1; x2; x3; x4; x5/ D g.x1; x2; x3; x4; x5/ D 0

in P 4
K such that at any completion Fv of F D K.t/ at a place trivial on K the form

f C tg has an Fv-point but has no F -point. Here is one example. Let p be a prime,
p � 1 mod 4. Let K D Qp , u 2 Z�

p a unit which is not a square and s � 2 an
integer. Then take

f D x2
1 C ux2

2 C px2
3 C up2sx2

4 C p2s�2x2
5

and
g D p4sC1x2

1 C p4sx2
2 C up2sx2

3 C x2
4 C px2

5 :

One immediately checks that this defines a smooth complete intersection Y in P 4
Qp

.

The system f D g D 0 has no primitive solution modulo p2, hence Y has no rational
point over Qp . Let v be a place of F trivial on K. If f C tg has good reduction at
v, then its reduction has rank 5 over the residue field, hence is isotropic. The places
v at which f C tg has bad reduction are 5 distinct rational points of Spec QpŒt �. At
each of these completions, f C tg has a good reduction subform whose reduction is
isotropic of rank 4 over Qp .

4. A local-global principle for principal homogeneous spaces under certain
linear algebraic groups

Given a scheme X and a smooth X -group scheme G, we let H 1.X; G/ denote the
first Čech cohomology set for the étale topology on X .

The following lemma is known ([16, Lemma 4.1.3]).

Lemma 4.1. Let A be a discrete valuation ring, K its fraction field, yA its comple-
tion and yK the field of fractions of yA. Let G=A be a reductive group (with con-
nected fibres). Then the fibre product of H 1.K; G/ and H 1. yA; G/ over H 1. yK; G/

is H 1.A; G/.

Proof. Let G � GLn;A be a closed embedding of A-groups and let Z=A denote the
quotient GLn;A=G (see [8, Corollary 6.12]). For any local A-algebra B , by [13, III,
3.2.4 and 3.2.5] we have an exact sequence of pointed sets

GLn.B/ ! Z.B/ ! H 1.B; G/ ! 1:
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More precisely, the natural map Z.B/ ! H 1.B; G/ induces a bijection between the
quotient of Z.B/ by the left action of GLn.B/ and the set H 1.B; G/. That the natural
map H 1.A; G/ ! H 1.K; G/ is injective is a theorem of Nisnevich [29]: there it
is proven that the kernel is trivial for any reductive A-group G, a known twisting
argument (an étale cohomology variant of [35], §5.4, p. 47, or [22], 28.9, p. 367)
then implies that the map is injective. Let x 2 Z.K/ be a lift of � 2 H 1.K; G/. If
the image of � in H 1. yK; G/ comes from H 1. yA; G/, then there exists y 2 Z. yA/ and
� 2 GLn. yK/ such that �:x D y 2 Z. yK/. The set GLn.K/ is dense in GLn. yK/,
the map GLn. yK/ ! Z. yK/ is continuous, and Z. yA/ is open in Z. yK/. We may
thus find g 2 GLn.K/ close enough to � that g:x lies in Z. yA/. Now g:x lies in
Z.K/ \ Z. yA/ D Z.A/. �

Unramified classes. Given G=A as above, and �K 2 H 1.K; G/, one says that �K is
unramified at A if it lies in the image of H 1.A; G/. By the above lemma, it then comes
from a well defined element �A 2 H 1.A; G/. By the same lemma, the condition is
equivalent to requiring that the image of �K in H 1. yK; G/ comes from a well defined
element � yA 2 H 1. yA; G/. Let k denote the residue class field of A and yA. If a class
�K 2 H 1.K; G/ is unramified, one may then consider its evaluation �k 2 H 1.k; Gk/.
It is given by the image of �A, or of � yA, in H 1.k; Gk/.

Theorem 4.2. Let A be a complete discrete valuation ring, K its field of fractions and
k its residue field. Let X=A be a projective, flat curve over Spec A. Assume that X

is connected and regular. Let F be the function field of X. Let G=A be a ( fibrewise
connected ) reductive group. Let �F 2 H 1.F; G/ be a class which is unramified at
all codimension 1 points of X.

(i) There exists � 2 H 1.X; G/ whose image in H 1.F; G/ is �F .

(ii) If moreover the (reduced ) components of the special fibre are regular, and for
any such component Y the image �k.Y / in H 1.k.Y /; G/ is trivial, then at any point
P of codimension 1 or 2 of X, with residue field �.P /, the image �P 2 H 1.�.P /; G/

is trivial.

(iii) If moreover there exists a connected linear algebraic group H=F such that
the F -group .G �A F / �F H is an F -rational variety, then �F D 1 2 H 1.F; G/.

Proof. (i) By definition of an unramified class, for each point P of codimension 1 on
X there exists �P 2 H 1.OX;P ; G/ with image �F over the fraction field F of OX;P .
By Nisnevich’s theorem [29], the class �P is uniquely defined.

There then exists a Zariski open set V �X which contains all points of dimension 1
of X and an element of H 1.V; G/ with image � in H 1.F; G/ (see the proof of
Proposition 6.8 in [8]). Since X is regular and of dimension 2, [8, Theorem 6.13]
shows that one may take V D X. We thus have a class � 2 H 1.X; G/ with image
�F in H 1.F; G/. In other terms, we have a torsor E over X under the X-group
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scheme GX D G �A X, whose restriction over the generic point of X has class
�F 2 H 1.F; G/.

(ii) Let P be a closed point of the special fibre. Let k.P / denote the residue
field at P . Let Y be a component of the special fibre which contains P . Since we
assumed the components to be regular, the local ring OY;P is a discrete valuation
ring. The image of the class of � in H 1.OY;P ; G/ is now trivial because its image in
H 1.k.Y /; G/ is trivial (easy case of [29]). Hence the image of � in H 1.k.P /; G/ is
trivial.

Now let P be a closed point of the generic fibre. Let B denote the integral closure
of A � K in the residue field K.P /. This is a complete discrete valuation ring. There
exists an A-morphism Spec B ! X which extends the inclusion of P in X . The
image of the special point of Spec B is a point in the special fibre of X=A, hence it
lies on some component Y . By the above argument, the evaluation of � at that point
is trivial. Thus the inverse image of � on Spec B is a G-torsor with trivial special
fibre. By Hensel’s lemma on the complete local ring B , this inverse image is trivial.
Hence �P is trivial at P , which is the generic point of Spec B .

(iii) The hypothesis in (ii) ensures that for each component Y of the special fibre
there exists a dense open set UY � Y such that the restriction of � to UY is trivial.

We may assume that each UY meets no component but Y . The complement of
the union of UY ’s in the special fibre is a finite set S of points.

By Proposition 6.6 of [14], there exists a finite A-morphism f W X ! P 1
A with

S � f �1.1k/. One now replaces the family of UY ’s by the family U of irreducible
components of f �1.A1

k
/. This replaces each UY by a nonempty affine open set of

UY and one replaces S by f �1.1k/.
By (ii), for each closed point P of the special fibre, for E as in (i) we have

E.k.P // ¤ ;. Since E=X is smooth, this implies E. yRP / ¤ ;, hence E.FP / ¤ ;
(notation as in Theorem 3.1 and as in [14]).

For each open set U D UY , the restriction of E over U is a trivial GU -torsor.
Since E=X is smooth, this implies E. yRU / ¤ ; hence E.FU / ¤ ;.

Since E �X F is a principal homogeneous space under the F -algebraic group
G �A F , for any field extension L of F , the group G.L/ acts transitively on E.L/.
An application of [15, Theorem 3.7 and Corollary 3.8] now yields E.F / ¤ ;, i.e.
� D 1 2 H 1.F; G/. �

Theorem 4.3. Let A be a complete discrete valuation ring, K its field of fractions
and k its residue field. Let X=A be a projective, flat curve over Spec A. Assume that
X is connected and regular. Let F be the function field of X. Let � be the set of all
discrete valuations on F .

(i) Let G=A be a ( fibrewise connected ) reductive group. If there exists a con-
nected linear algebraic group H=F such that the F -group .G �A F / �F H is an
F -rational variety, then the restriction map with respect to completions H 1.F; G/ !Q

v2� H 1.Fv; G/ has a trivial kernel.



Vol. 87 (2012) Patching and local-global principles 1023

(ii) The restriction map of Brauer groups Br F ! Q
v2� Br Fv has a trivial

kernel.

Proof. Statement (i) immediately follows from the previous theorem. As for state-
ment (ii), it follows from (i) applied to the projective linear groups PGLn. �

Remark 4.4. Using totally split unramified coverings of models of Tate curves over
a p-adic field (see [34]), one sees that Theorem 4.3 (i) does not in general hold for
nonconnected groups, for example for G D Z=2. A concrete example is given by the
elliptic curve E with affine equation y2 D x.1 � x/.x � p/ over the p-adic field Qp

(p odd). The rational function 1�x is not a square in the function field F D Qp.E/,
but it becomes a square in each completion Fv of F . This example is discussed in
the appendix to this paper (Section 6). This implies that the patching results of [15]
in general do not extend to nonconnected groups.

Lemma 4.5. Let A be the ring of integers of a p-adic field K, let k be its residue field.
Let G=A be a ( fibrewise connected ) reductive group. Then there exists a connected
linear algebraic group H=K such that the K-group .G �A K/ �K H is K-rational.

Proof. Let Z=A be the A-scheme of Borel subgroups of G. This is a proper and
smooth scheme over Spec A. The special fibre G0 D G �A k is a connected reductive
group over the finite field k. Any such k-group is quasisplit ([35, Chapter III, §2.2,
Theorem 1]). Thus Z.k/ ¤ ;, hence Z.A/ ¤ ; by Hensel’s lemma. There thus
exists a Borel A-subgroup B � G. Let T � B be its maximal A-torus. Over K,
the K-group GK D G �A K contains the open set U C �K U � �K .T �A K/,
where U C � BK is the unipotent radical of BK and U � is the unipotent radical of
the opposite K-Borel subgroup of BK � GK . Each of these unipotent radicals is
K-isomorphic to an affine space over K.

Let the k-torus T0 D T �A k be split by a Galois field extension k0=k. There
exists an exact sequence of k-tori split by k0=k

1 ! Q0 ! P0 ! T0 ! 1;

where P0 is a quasitrivial k-torus and Q0 is a flasque k-torus (Endo and Miyata,
Voskresenskiı̆, cf. §1 and §5 in [7], §0 in [9]).

Because k is a finite field, the field extension k0 of k is cyclic. By a theorem
of Endo and Miyata (see [7, Proof of Corollary 3, p. 200]), for any flasque k-torus
Q0 split by a cyclic extension k0 of k, there exists a k-torus Q1 split by k0 such that
Q0 �k Q1 is k-isomorphic to a quasitrivial k-torus. If we let K 0=K be the cyclic,
unramified extension corresponding to k0=k, and we let A0=A be the finite, connected,
étale Galois cover given by the integral closure of A � K in K 0, the sequence of
characters associated to the above exact sequence enables us to produce a sequence
of A-tori split by A0=A,

1 ! Q ! P ! T ! 1;
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hence in particular a sequence of K-tori split by K 0=K

1 ! QK ! PK ! TK ! 1;

with QK a direct factor of a quasitrivial K-torus and PK a quasitrivial K-torus (for
basic facts on tori over arbitrary bases, including quasitrivial and flasque tori, see [9],
§0 and §1).

Because QK is direct factor of a quasitrivial K-torus, Hilbert’s theorem 90 implies
that the projection PK ! TK has a rational section, hence QK �K TK is K-birational
to PK , which is a K-rational variety. Now the product GK �K QK is K-birational
to U C �K U � �K PK , which is a K-rational variety. �

Theorem 4.6. Let A be the ring of integers of a p-adic field K, let k be its residue
field. Let X=A be a projective, flat curve over A. Assume that X is connected and
regular, and that the (reduced ) components of the special fibre are regular. Let F be
the function field of X. Let G=A be a ( fibrewise connected ) reductive group.

If a class in H 1.F; G/ is unramified at points of codimension 1 on X, then it is
trivial.

Proof. By Theorem 4.2 (i), there exists � 2 H 1.X; G/ which restricts to the given
class in H 1.F; G/. By hypothesis, each component Y of the special fibre is a regular,
hence smooth, projective curve over the finite field k. Let us show that the hypothesis
of Theorem 4.2 (ii) is fulfilled. It is enough to show that for a smooth, projective,
connected curve Y=k and Gk a connected reductive group the image of H 1.Y; Gk/

in H 1.k.Y /; Gk/ is trivial. There exists a central extension of algebraic k-groups

1 ! Q ! Gsc
k � P ! Gk ! 1;

where Gsc
k

is a simply connected semisimple k-group, P is a quasitrivial k-torus and
Q is a flasque k-torus ([5, Proposition 3.1]). As recalled in the proof of Lemma 4.5,
because k is finite there exists a k-torus Q1 such that Q �k Q1 is a quasitrivial
k-torus. The Brauer group H 2.Y; Gm/ of a smooth projective curve Y over a finite
field is zero. Since this holds over any finite extension of k, this implies H 2.Y; T / D 0

for any quasitrivial k-torus, hence for any k-torus T which is a direct factor of a
quasitrivial k-torus. Thus H 2.Y; Q/ D 0.

In the commutative diagram of exact sequences of pointed étale cohomology sets

H 1.Y; Gsc
k

� P / ��

��

H 1.Y; Gk/ ��

��

H 2.Y; Q/

��
H 1.k.Y /; Gsc

k
� P / �� H 1.k.Y /; Gk/ �� H 2.k.Y /; Q/.

we have H 1.k.Y /; Gsc
k

/ D 1 (Harder [17], [18]) and H 1.k.Y /; P / D 0 (Hilbert’s
theorem 90), and we have proved H 2.Y; Q/ D 0. Thus the image of H 1.Y; Gk/ in
H 1.k.Y /; Gk/ is trivial.
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The claimed result now follows from Lemma 4.5 and Theorem 4.2 (iii). �

Remark 4.7. Applying Theorem 4.6 to the projective linear groups PGLn, one re-
covers a proof of Grothendieck’s theorem that the Brauer group of a regular proper
model X=A is trivial. That in its turn is closely related to the statement that an el-
ement of the Brauer group of X which vanishes at each closed point of X is trivial
(Lichtenbaum [25]).

Theorem 4.8. Let A be the ring of integers of a p-adic field K, let k be its residue
field. Let X=K be a smooth, projective, geometrically integral curve. Let F be
the function field of X . Let � be the set of all discrete valuations on F . Let G=A

be a ( fibrewise connected ) reductive group. The restriction map with respect to
completions H 1.F; G/ ! Q

v2� H 1.Fv; G/ has a trivial kernel.

Proof. One knows that X=K admits a model X=A as in Theorem 4.6. Suppose that
� 2 H 1.F; G/ is in the kernel of the above restriction map. By Lemma 4.1, the class �

is unramified at points of codimension 1 on X. We conclude by an application of
Theorem 4.6. �

Remark 4.9. For any integer n and the A-group G D PGLn, in the above theorem
one may replace � by the set �F=K of discrete valuations on F which are trivial on
K: this is just a reinterpretation of Lichtenbaum’s theorem [25]. That this is not so
for arbitrary G is shown by the following example.

Let p be an odd prime and K D Qp . Let u be a unit in Qp which is not a
square. Let X=K be the elliptic curve y2 D x.x C 1/.x � p/. Let F D K.X/. For
a 2 F �, let .a/ 2 F �=F �2 D H 1.F; Z=2/. Since the divisor of x 2 F � on X is
divisible by 2, the cup-product ˛ D .x/ [ .u/ [ .p/ 2 H 3.F; Z=2/ is unramified
at places v of F trivial on K, hence is trivial in the completion Fv at such a place.
The prime p defines a place on F , the residue field is the function field Fp.Y /, where
Y is the curve defined by y2 D x2.x C 1/ over Fp , which is birational to the curve
z2 D x C 1.The residue of ˛ at that place is .z2 � 1/ [ .u/ 2 H 2.Fp.Y /; Z=2/, and
this class is nonzero, since it has a nontrivial residue at z D 1.

This implies: for G the split group of type G2, the restriction map

H 1.F; G/ !
Y

v2�F=K

H 1.Fv; G/

has a nontrivial kernel.
Lichtenbaum’s theorem also implies that for any central simple algebra over D

over K, and G the F -group PGLD , the above map has a trivial kernel. The above
example shows that this is not so for the K-group G D SLD , where D is the quaternion
algebra .u; p/ over K D Qp .
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Remark 4.10. Let A be the ring of integers of a p-adic field K. Let G=A be a
(connected) reductive group. Let F D K.X/ be the function field of a smooth geo-
metrically integral curve over K. Let X be a regular model of X over A. Assume that
the fibres of G ! Spec A are simply connected (this is equivalent to the assumption
that the K-group G �A K is simply connected). Then for � 2 H 1.F; G/ and x a
point of codimension 1 on X, defining a valuation v on F with associated completion
Fv , the conditions

(i) � is unramified at x (as in Theorem 4.6)
(ii) � has trivial image in H 1.Fv; G/ (as in Theorem 4.3 (i) and Theorem 4.8)

are equivalent.
Indeed, for any point x of codimension 1 on a regular model X, with complete

local ring yAx and residue class field �.x/, we have H 1. yAx; G/ ' H 1.�.x/; G/

(Hensel’s lemma) and H 1.�.x/; G/ D 1 whether x lies on the generic fibre of X=A

(Kneser, Bruhat–Tits) or x is a generic point of a component of the special fibre of
X=A (Harder [17], [18]).

5. Connection to Rost’s invariant and a theorem of Kato

For any simply connected, absolutely almost simple semisimple group G over a field
F of characteristic zero, we have Rost’s invariant (see [22, Chapter VII, Section 31]):

RG W H 1.F; G/ ! H 3.F; Q=Z.2//:

In a number of cases, this map has a trivial kernel. Such is the case if G D SL.D/

for D=F a central simple algebra of squarefree index (Merkurjev–Suslin). Such is
the case for quasisplit groups of type 3;6D4 ([22, 40.16], [4, Theorem 6.14]) or of
type E6; E7 (Garibaldi [10, Theorem 0.1], see also [4, Theorem 6.1]). Such is the
case for the split group G2 ([36, Theorem 9]). Such is the case for the split group F4

([36, §9.4]). It is not reasonable to hope for a positive answer for an arbitrary such
G, as examples with G D Spin.q/ show.

For fields of cohomological dimension at most 2, the triviality of the kernel of
the Rost invariant RG is none other than Serre’s conjecture II for G, which in this
generality is still unknown for G of type E8.

Remark 5.1. For fields of cohomological dimension 3 and G arbitrary, RG may have
a nontrivial kernel, as shown by the following example due to Merkurjev, and which
we publish with his kind permission. There exists a field k of characteristic 0 and of
cohomological dimension 2 over which there exist a central simple division algebra
A D H1 ˝k H2 with H1 and H2 quaternion algebras ([27, Theorem 4]). Let F be
either k.t/ or k..t//. Then F has cohomological dimension 3. The reduced norm
of A is a homogeneous form of degree 4 without a zero over k. Thus t2 2 F is not
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a reduced norm of A ˝k F . That is, the class of t2 in F �=Nrd.A�
F / D H 1.F; G/,

with G D SL1.A/, is nontrivial. Let ŒA� 2 H 2.k; �4/ � Br k be the class of A.
By [22, p. 437] (for more details, see [26, p. 138]), the Rost invariant RG sends
t2 2 H 1.F; GF / to the cup-product t2 [ ŒA� 2 H 3.F; �˝2

4 / � H 3.F; Q=Z.2//

(here t2 is taken in F �=F �4 D H 1.F; �4/). Since 2ŒA� D 0 2 Br k, this cup-product
is zero.

When G is quasisplit, not of type E8, the situation is much better. The following
proposition is certainly known to specialists.

Proposition 5.2. Let F be a field of characteristic not 2 and of 2-cohomological
dimension at most 3. Let q0 be a quadratic form over F which is isotropic and
of dimension at least 5. Let G D Spin.q0/. Then the kernel of the Rost map
H 1.F; G/ ! H 3.F; Q=Z.2// is trivial.

Proof. Let
1 ! �2 ! Spin.q0/ ! SO.q0/ ! 1

be the central isogeny from the Spin group to the special orthogonal group. This
gives rise to an exact sequence of pointed Galois cohomology sets

SO.q0/.F /
ı0! H 1.F; �2/

i! H 1.F; Spin.q0//
j! H 1.F; SO.q0//:

For � 2 H 1.F; Spin.q0//, the class j.�/ corresponds to a quadratic form q1 hav-
ing dimension dim.q0/ D dim.q1/, discriminant disc.q0/ D disc.q1/ and Clifford
invariant c.q0/ D c.q1/. Then in the Witt group W.F / the class q1 ? �q0 is con-
tained in the third power I 3.F / of the fundamental ideal and its Arason invariant
e3.q1 ? �q0/ 2 H 3.F; �2/, which coincides with the Rost invariant of � ([22,
p. 437]), is zero. Now the hypothesis cd2.F / � 3 implies that H 4.F; �2/ D 0,
I 4.F / D 0 and that e3 W I 3.F / ! H 3.F; �2/ is an isomorphism ([28], [32], and
[1, Corollary 4, Theorem 2]). The two forms q0 and q1 have the same dimension. By
Witt simplification they are isomorphic. Thus j.�/ D 1, hence � D i.�/ for some
� 2 H 1.F; �2/. As q0 is isotropic, the connecting map ı0 W SO.q0/ ! H 1.F; �2/ D
F �=F �2, which is the spinor map, is onto. Thus � D 1 2 H 1.F; Spin.q0//. �

Theorem 5.3. Let F be a field of characteristic zero and of cohomological dimension
at most 3. Let G=F be an absolutely almost simple, simply connected, quasisplit
semisimple group. Assume that G is not of type E8. Then the kernel of the Rost map
H 1.F; G/ ! H 3.F; Q=Z.2// is trivial.

Proof. The cases 1An and Cn are trivial, since in these cases H 1.F; G/ D 1 over
any field F . For quasisplit groups of type 3;4D4, E6, E7, G2 and F4 the kernel is
trivial over any field F of characteristic zero (see references above).
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Let G be of type 2An, quasisplit, n � 2. There is a quadratic extension L=F

and an L=F –hermitian form h of dimension n C 1 such that G D SU.h/. Further
G quasisplit implies that G is isotropic ([2, 20.6 (ii), p. 225]), which in turn implies
that the hermitian form h is isotropic ([2, 23.8, p. 264]). Let V be the underlying
space of h. Then the map q W V ! F given by q.v/ D h.v; v/ is a quadratic form
of dimension 2n C 2 over F which is isotropic. Further there is a homomorphism
˛ W SU.h/ ! Spin.q/ such that the composite map

H 1.F; SU.h/ ! H 1.F; Spin.q/ ! H 3.F; Q=Z.2//;

is the Rost invariant for SU.h/ where the first map is induced by ˛ and has trivial
kernel, and the second one is the Rost invariant for Spin.q/ ([22, 31.44, p. 438]). The
triviality of the kernel of the Rost invariant in this case follows from Proposition 5.2.

Let G be of type Bn; n � 2, or 1Dn or 2Dn, n � 3, which is quasisplit. Then
G is isomorphic to Spin.q/ for some quadratic form q over F of dimension at least
5; further, G quasisplit implies that G is isotropic, which in turn implies that the
quadratic form q is isotropic ([2, 23.4, p. 256]). In this case the triviality of the kernel
of the Rost invariant follows from Proposition 5.2.

This completes the proof of the triviality of the kernel of the Rost invariant for all
quasisplit groups not of type E8. �

By combining Theorem 5.3 and a theorem of Kato, one gets a proof of Conjecture 2
of the introduction for quasisplit groups without E8-factors. That proof is independent
of the other sections of the present paper.

Theorem 5.4. Let K be a p-adic field. Let X=K be a smooth, projective, geometri-
cally integral curve. Let F D K.X/ be the function field of X . Let � denote the set of
discrete valuations on the field F . Given v 2 � we let Fv denote the completion of F

at v. Let G=F be a quasisplit, simply connected, absolutely almost simple group with-
out E8 factor. Then the kernel of the diagonal map H 1.F; G/ ! Q

v2� H 1.Fv; G/

is trivial.

Proof. The field F D K.X/ is of cohomological dimension 3. The result immedi-
ately follows from the combination of Theorems 5.3 and a theorem of Kato [20]: For
X=K as in the statement of the theorem, the kernel of the diagonal restriction map

H 3.F; Q=Z.2// !
Y

v2�

H 3.Fv; Q=Z.2//

is trivial (here it is enough to consider the v’s associated to the codimension 1 points
on a regular proper model of X over the ring of integers of K). �

The hypotheses of the above theorem should be compared with those of Theo-
rem 4.8, whose proof builds upon the work of Harbater, Hartmann and Krashen.
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Using Theorem 4.8 together with Bruhat–Tits theory, we now show that Theo-
rem 5.3 also holds for groups of type E8 over F.X/.

Theorem 5.5. Let A be the ring of integers of a p-adic field K. Let X=K be a smooth,
projective, geometrically integral curve. Let F D K.X/ be the function field of X .
Let G be an absolutely almost simple, simply connected semisimple group over A. If
G is of type E8, assume that the residue characteristic is different from 2, 3 and 5.
Then the kernel of the Rost map H 1.F; G/ ! H 3.F; Q=Z.2// is trivial.

Proof. As explained in the proof of Lemma 4.5, the group G=A is automatically
quasisplit.

We may restrict the set of places under consideration to the set of points of codi-
mension 1 on a regular proper model X=A. Let Ov be the ring of integers in Fv . The
residue field � D �v at such a place is either a p-adic field or a function field in one
variable over a finite field.

Let F nr
v be the maximal unramified extension of Fv . At a prime l different from

the residue characteristic, the l-cohomological dimension of F nr
v is 1, at the residue

characteristic it is at most 2 ([35, Chapter II, §4.3, Proposition 12, p. 95]).
From this we deduce H 1.F nr

v ; G/ D 1 if the residue characteristic is not a torsion
prime of G; this would hold even if the connected group G was not simply connected,
as follows from Steinberg’s theorem, see [36, Theorem 400].

In the general case, i.e. when the residue characteristic is a torsion prime and the
quasisplit group G is simply connected and not of type E8, we resort to the known
(case by case) theorem that for such a group over a field L of characteristic zero
and of cohomological dimension 2, we know H 1.L; G/ D 1 (Merkurjev and Suslin,
Bayer-Fluckiger and Parimala, Gille, Chernousov, see [36] and [12]). Under our

hypotheses, we thus have H 1.F nr
v =Fv; G/

'! H 1.Fv; G/.
By Theorem 4.8, to prove the theorem it is enough to show that for any v as above

the kernel of the map H 1.Fv; G/ ! H 3.Fv; Q=Z.2// is trivial.
Let � 2 H 1.F nr

v =Fv; G/. Since G=A is a reductive A-group, Bruhat–Tits theory,
as developed in Gille’s paper [11, Theorem 30, Theorem 40] shows that there exist
a parahoric subgroup P over Ov and a class � 2 H 1.Ov; P / with the following
properties.

The image of � under the natural map H 1.Ov; P / ! H 1.F nr
v =Fv; G/ is � .

The reductive quotient M=� of P �Ov
� is part of an exact sequence of reductive

groups over the field �:

1 ! Gm ! M 0 ! M ! 1;

where M 0=� is the product of a simply connected semisimple group and a torus which
is a direct factor of a quasitrivial torus.
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Let us consider the composite map

H 1.F nr
v =Fv; G/ ! KerŒH 3.Fv; Q=Z.2// ! H 3.F nr

v ; Q=Z.2//�

! H 2.�; Q=Z.1//
'! Br.�/;

where the map from H 3 to H 2 is the usual residue map for primes different from the
residue characteristic, and the Kato residue map in general. The image of � under
this composite map coincides with the image of � under the composite map

H 1.Ov; P /
'! H 1.�; P �Ov

�/
'! H 1.�; M/ ! H 2.�; Gm/ D Br.�/;

where the map H 1.�; M/ ! H 2.�; Gm/ is the boundary map from the above se-
quence.

Since � is either a p-adic field or a function field in one variable over a finite field,
H 1.�; M 0/ D 0. Hence the map H 1.�; M/ ! Br.�/ has trivial kernel.

If the image of � 2 H 1.Fv; G/ D H 1.F nr
v =Fv; G/ in H 3.Fv; Q=Z.2// is zero,

we conclude that � D 1 hence that � D 1. �

6. Appendix

In this appendix we present a down-to-earth computation for the phenomenon men-
tioned in Remarks 3.3 and 4.4. Let p be an odd prime. Let E be the elliptic curve
over Qp defined by the affine equation

y2 D x.1 � x/.x � p/: (A1)

Let F D Qp.E/ be its function field. We clearly have

x C .1 � x/ D 1I x � .x � p/ D pI .1 � x/ C .x � p/ D 1 � p: (A2)

Let A � F be a proper discrete valuation ring, let v denote the valuation, Av the
completion of A and Fv the fraction field of Av , i.e. the completion of F at v. Let
k be the residue field of A. Let 	 be uniformizing parameter for A. If v.p/ D 0,
the field k is a finite extension of Qp . If v.p/ ¤ 0 then v induces on Qp a proper
valuation and v.p/ > 0. In both cases, 1 � p is a square in k hence is a unit which
is a square in Av .

Claim. The function 1�x is not a square in F , but it is a square in each completionFv .

That .1 � x/ is not a square is proved by considering the quadratic extension
F=Qp.x/: the kernel of the restriction map on square classes is Z=2, spanned by the
class of x.1 � x/.x � p/.

Assume v.1 � x/ < 0. Then v.x/ D v.1 � x/ D v.x � p/ hence (A1) gives that
each of these is even. Let x D u=	2n with u 2 A� and n > 0. From (A1) we get
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that �u3, hence �u is a square in Av . Now 1 � x D .	2n � u/=	2n is a square in
Kv . Assume v.1 � x/ > 0. Then v.x/ D 0 and v.x � p/ D 0. From (A1) we get
1 � x D u	2n with u a unit and n > 0. Then from (A2) we get that x and x � p

are squares in Av . But then (A1) shows that 1 � x is a square in Kv . Now assume
v.1 � x/ D 0. If v.x/ > 0 or v.x � p/ > 0, then (A2) implies that 1 � x is a square
in Av . We are reduced to the case where v.1 � x/ D v.x/ D v.x � p/ D 0. If
v.p/ > 0, then x.x � p/ is a square in Av . From (A1) we deduce that 1 � x is a
square in Av .

We are reduced to the case v.1 � x/ D v.x/ D v.x � p/ D 0, hence v.y/ D 0,
and v.p/ D 0. That is, the valuation v corresponds to a closed point M on the
elliptic curve E over Qp (the trivial valuation is excluded). The ring A is the local
ring of E at that point. The point M lies on the affine curve y2 D x.1 � x/.x � p/:

Let k=Qp be the corresponding finite field extension. Thus k is the residue field
of Av . Let B be the ring of integers of k. The reductions of x and y modulo the
maximal ideal of A give rise to elements a; b 2 k with b.1 � b/.b � p/ ¤ 0 and
a2 D b.1 � b/.b � p/ ¤ 0. The element 1 � x is a square in Av if and only if
1 � b is a square in k. To show that this is indeed the case, we do exactly the same
computations in k, with respect to the valuation w of k, which satisfies w.p/ > 0, as
we had done in F . The computation is identical, it stops at the analogue of the end
of the previous paragraph.
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